Class IX Chapter 7 - Triangles
 Maths

Exercise 7.1 Question

1:

In quadrilateral $A C B D, A C=A D$ and $A B$ bisects $\angle A$ (See the given figure). Show that \cong

Answer:
$\triangle A B C \quad \triangle A B D$. What can you say about $B C$ and $B D$?

In $\triangle A B C$ and $\triangle A B D$,
$A C=A D$ (Given)
$\angle C A B=\angle D A B(A B$ bisects $\angle A)$
$A B=A B$ (Common)
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle A B D$ (By SAS congruence rule)
$\therefore \quad B C=B D(B y C P C T)$
Therefore, $B C$ and $B D$ are of equal lengths.

Question 2:

$A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$ (See the given figure). Prove that
(i) $\quad \triangle A B D \cong \triangle B A C$
(ii) $\mathrm{BD}=\mathrm{AC}$
$\angle \angle$
(iii) $\mathrm{ABD}=\mathrm{BAC}$.

Answer:
In $\triangle A B D$ and $\triangle B A C$,
$A D=B C$ (Given)
$\angle \angle$
$\mathrm{DAB}=\mathrm{CBA}$ (Given)
$A B=B A$ (Common)
$\therefore \triangle A B D \cong \triangle B A C$ (By SAS congruence rule)
$\therefore \mathrm{BD}=\mathrm{AC}(\mathrm{By} \mathrm{CPCT})$ And, $\angle \mathrm{ABD}$
$=\stackrel{\text { BAC }}{ }$ (By CPCT)

Question 3:
$A D$ and $B C$ are equal perpendiculars to a line segment $A B$ (See the given figure).
Show that CD bisects AB.

Answer:
In $\triangle B O C$ and $\triangle A O D$,

```
\angle }\angle\textrm{BOC}=\textrm{AOD (Vertically opposite angles)
\angle }\angle\textrm{CBO}=\textrm{DAO}(\mathrm{ Each 90}
BC = AD (Given)
\therefore \triangleBOC\cong\triangleAOD (AAS congruence rule)
\therefore BO = AO (By CPCT)
#
    CD bisects AB.
```

Question 4: I and m are two parallel lines intersected by another pair of parallel lines p and q (see
the given figure). Show that $\triangle A B C \overline{\bar{\nu}} C D A$.

Answer:
In $\triangle A B C$ and $\triangle C D A$,

```
\angleBAC = \angleDCA (Alternate interior angles, as p | q)
AC = CA (Common)
\angle < BCA = DAC (Alternate interior angles, as I | m)
\therefore\quad\therefore\quad\triangleABC \triangleCDA (By ASA congruence rule)
```


Question 5:

Line $I \therefore A$ is the bisector of an angle and B is any point on $I . B P$ and $B Q$ are perpendiculars from B to the arms of $: A$ (see the given figure). Show that: i) $\triangle A P B \therefore$ $\triangle A Q B$ (ii) $B P=B Q$ or B is equidistant from the arms of $\therefore(A$.

Answer:
In $\triangle A P B$ and $\triangle A Q B$,
$\therefore \quad \therefore \mathrm{APB}=\mathrm{AQB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\therefore \quad \therefore \quad \mathrm{PAB}=\mathrm{QAB}(1$ is the angle bisector of $\therefore \mathrm{A})$
$A B=A B$ (Common)
$\therefore \triangle \mathrm{APB} \therefore \triangle \mathrm{AQB}$ (By AAS congruence rule) $\therefore \mathrm{BP}=$ BQ (By CPCT)
rms of s.A. Or,
it can be said that B is equidistant from the a

Question 6:

In the given figure, $A C=A E, A B=A D$ and $\therefore B A D=\therefore E A C$. Show that $B C=D E$.

Answer:
It is given that $* B A D=* E A C$
$\therefore B A D+\therefore D A C=\therefore E A C+\therefore D A C$
$\therefore B A C=\therefore D A E$
In $\triangle B A C$ and $\triangle D A E, A B=A D$
(Given) $\therefore \mathrm{BAC}=$
\therefore DAE (Proved above)
$A C=A E$ (Given)
$\therefore \quad \triangle B A C \therefore \triangle D A E$ (By SAS congruence rule)
$\therefore \quad B C=D E(B y C P C T)$
Question 7:
$A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that BAD $=\therefore A B E$ and $\therefore E P A=\therefore$ DPB (See the given figure). Show that i)
\therefore
\triangle DAP $\triangle E B P($
(ii) $A D=B E$

Answer:
It is given that $\mathrm{EPA}=\mathrm{DPB}$
$\therefore \therefore E P A+D P E=D P B+D P E \cdot$
$\therefore \quad \therefore$ DPA $=$ ÉPB
In $\sqrt{\Delta}$ DAP and $\sqrt{\Delta}$
$\therefore \quad \dot{A} \quad$ EBP,
DAP $=$ EBP (Given)
$A P=B P(P$ is mid-point of $A B)$
$\therefore \quad \therefore \quad D P A=E P B$ (From above)
$\therefore \quad \therefore \quad \triangle D A P \quad \triangle E B P$ (ASA congruence rule)
$\therefore \quad A D=B E(B y C P C T)$

Question 8:

In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point
B (see the given figure). Show that: i)
$\triangle A M C \therefore \triangle B M D($
ii) ${ }^{-D B C}$ is a right angle. (iii)

Answer:
(i) In $\triangle A M C$ and $\triangle B M D$,
$A M=B M$ (M is the mid-point of $A B$)
$\therefore \mathrm{AMC}=\therefore \mathrm{BMD}$ (Vertically opposite angles)
$\mathrm{CM}=\mathrm{DM}$ (Given)
$\therefore \quad \triangle \mathrm{AMC} \therefore \triangle \mathrm{BMD}$ (By SAS congruence rule)
$\therefore \quad A C=B D(B y C P C T)$ And,
\therefore ACM $=\therefore$ BDM (By CPCT) ii)
$\therefore \quad \mathrm{ACM}=$ ='BDM $($
However, A்CM and \therefore BDM are alternate interior angles.
Since alternate angles are equal,
It can be said that DB || AC

$$
\begin{aligned}
& \therefore \quad \therefore \quad \mathrm{DBC}+\therefore \mathrm{ACB}=180^{\circ} \text { (Co-interior angles) } \\
& \therefore \therefore \mathrm{DBC}+90^{\circ}=180^{\circ} \\
& \therefore \therefore \mathrm{DBC}=90^{\circ}
\end{aligned}
$$

(iii) In $\triangle D B C$ and $\triangle A C B$, DB = AC (Already proved)
$\therefore \mathrm{DBC}=\therefore \mathrm{ACB}\left(\right.$ Each 90°)
$B C=C B$ (Common)
$\therefore \triangle D B C \quad \triangle A C B$ (SAS congruence rule) iv)
$\triangle D B C \quad \triangle A C B($
$\therefore \quad \mathrm{AB}=\mathrm{DC}(\mathrm{By} \mathrm{CPCT})$
$\therefore \quad \mathrm{AB}=2 \mathrm{CM}$
$\therefore \mathrm{CM}=\frac{1}{2} \mathrm{AB}$

1:
In an isosceles triangle $A B C$, with $A B=A C$, the bisectors of $\therefore B$ and $\therefore C$ intersect each other at O . Join A to O . Show that:
i) $O B=O C$ (ii) $A O$ bisects $\therefore \mathrm{A}$ (Answer:

(i) It is given that in triangle $A B C, A B=A C$

```
\therefore \therefore A ACB = ABC (Angles opposite to equal sides of a triangle are
\therefore\frac{1}{2}}.:ACB=\frac{1}{2}.:AB
\thereforeOOCB = \thereforeOBC
\therefore
    OB = OC (Sides opposite to equal angles of a triangle are also equal)
```

(ii) In $\triangle O A B$ and $\triangle O A C, A O$
=AO (Common)

```
AB = AC (Given)
OB = OC (Proved above)
```


$C D=B D(A D$ is the perpendicular bisector of $B C)$
$\therefore \quad \triangle \mathrm{ADC} \therefore \triangle \mathrm{ADB}$ (By SAS congruence rule)
$\therefore \quad A B=A C(B y C P C T)$
Therefore, $A B C$ is an isosceles triangle in which $A B=A C$.

Question 3:

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and $A B$ respectively (see the given figure). Show that these altitudes are equal.

Answer:
In $\triangle A E B$ and $\triangle A F C$,
$\therefore \mathrm{AEB}$ and $\mathrm{A}^{\prime} F\left(\right.$ Each $\left.90^{\circ}\right) \quad \mathrm{A}=$
\therefore A (Common angle)

```
AB = AC (Given)
\therefore\triangleAEB \therefore\triangleAFC (By AAS congruence rule) }\therefore\textrm{BE}
CF (By CPCT)
```


Question 4:

$A B C$ is a triangle in which altitudes $B E$ and $C F$ to sides $A C$ and $A B$ are equal (see the given figure). Show that
(i) $\Delta_{\text {ABE }:} \Delta_{\text {ACF }}$

Answer:
(ii) $A B=A C$, i.e., $A B C$ is an isosceles triangle.
(i) In $\triangle A B E$ and $\triangle A C F$,
$\therefore \mathrm{ABE}$ and $\mathrm{A}^{\circ} \mathrm{CF}$ (Each 90°)
$\therefore \mathrm{A}=\mathrm{A}^{\prime}$ (Common angle)
$B E=C F$ (Given)
$\therefore \triangle \mathrm{ABE} \therefore \triangle \mathrm{ACF}$ (By AAS congruence rule)
(ii) It has already been proved that
$\triangle A B E \triangle A C F$
$\therefore \mathrm{AB}=\mathrm{AC}(\mathrm{By} \mathrm{CPCT})$
Question 5:
$A B C$ and DBC are two isosceles triangles on the same base BC (see the given figure).
Show that $: A B D=\therefore A C D$.

Answer:

Let us join AD.
In $\triangle A B D$ and $\triangle A C D$,
$A B=A C$ (Given)
$B D=C D$ (Given)
$A D=A D$ (Common side)
$\therefore \triangle \mathrm{ABD} \cong \quad \triangle \mathrm{ACD}$ (By SSS congruence rule)
$\therefore \quad \therefore \mathrm{ABD}=A C D$ (By CPCT)
Question 6:
$\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D$
$=A B$ (see the given figure). Show that $\therefore B C D$ is a right angle.

Answer:
In $\triangle A B C$,
$A B=A C$ (Given)
$\therefore \therefore \mathrm{ACB}=\therefore \mathrm{ABC}$ (Angles opposite to equal sides of a triangle are also equal)
In $\triangle A C D$,
$A C=A D$
$\therefore \therefore$ ADC $=\therefore$ ACD (Angles opposite to equal sides of a triangle are also equal)
In $\triangle B C D$,

```
\(\therefore A B C+B C D+A D C=180^{\circ}\) (Angle sum property of a triangle)
\(\therefore A C B+A C B+A C D \dot{D}+\therefore A C D=180^{\circ}\)
\(\therefore \quad \therefore 2(A C B+A \subset D)=180^{\circ}\)
\(\therefore \quad \therefore 2(\mathrm{BCD})=180^{\circ}\)
\(\therefore \therefore\)
    \(B C D=90^{\circ}\)
```


Question 7:

$A B C$ is a right angled triangle in which $\therefore A=90^{\circ}$ and $A B=A C$. Find $\therefore B$ and $\therefore C$.
Answer:

is given that
$A B=A C$
$\therefore \dot{C}=\mathrm{B}$ (Angles opposite to equal sides are also equal)
In $\triangle A B C$,

```
\(\therefore A+\dot{B}+C \stackrel{\dot{=}}{=} 180^{\circ}\) (Angle sum property of a triangle)
\(\therefore 90^{\circ}+\dot{\ddot{B}}+\dot{C}=180^{\circ}\)
```



```
\(\begin{aligned} & \therefore \quad \therefore \\ & 2 \mathrm{~B}=90^{\circ}\end{aligned}\)
\(\therefore \therefore\)
\(\therefore \stackrel{B}{B}=45_{i}^{\circ}\)
    \(B=C=45^{\circ}\)
```


Question 8:

Show that the angles of an equilateral triangle are 60° each.
Answer:

Let us consider that $A B C$ is an equilateral triangle.
Therefore, $A B=B C=A C$
$A B=A C$
$\therefore C^{*}=B$ (Angles opposite to equal sides of a triangle are equal)

Also,
$A C=B C$
$\therefore \mathrm{B}=\mathrm{A}$ (Angles opposite to equal sides of a triangle are equal)
Therefore, we obtain $\therefore \mathrm{A}$
$=B \cdot=\quad \therefore$
In $\triangle A B C$,
$\therefore A+B+C=180^{\circ}$
$\therefore \mathrm{A}^{\circ}+\mathrm{A}+\mathrm{A}={ }^{\circ} 180^{\circ}$
$\therefore 3 \dot{A}=180^{\circ}$
$\therefore \dot{A}=60^{\circ}$
$\therefore \dot{A}=\mathrm{B} \stackrel{\Delta}{=} \mathrm{C}=\dot{\Delta} 60^{\circ}$ Hence, in an equilateral triangle, all interior angles are of measure 60°.

Exercise 7.3

Question 1:
$\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see the given figure). If AD is extended to intersect
$B C$ at P, show that
i) $\triangle A B D \therefore \triangle A C D$ (ii) $\triangle A B P \quad \triangle A C P$
(iii) AP bisects \therefore A as well as D̀. (
(iv) $A P$ is the perpendicular bisector of $B C$.

Answer:
(i) In $\triangle A B D$ and $\triangle A C D$,
$A B=A C$ (Given)
$B D=C D$ (Given)
$A D=A D$ (Common)
$\therefore \triangle A B D \quad \triangle A C D$ (By SSS congruence rule)
$\therefore B^{\prime} A D=C A^{\circ} D(B y C P C T)$
$\therefore \therefore$ BAP $=$ C CAP \ldots.
(ii) In $\triangle A B P$ and $\triangle A C P$, $A B=A C$ (Given)
$\therefore B A P=\therefore C A P[$ From equation (1)]
$A P=A P$ (Common)
$\therefore \quad \triangle \mathrm{ABP} \therefore \triangle \mathrm{ACP}$ (By SAS congruence rule)
$\therefore \quad \mathrm{BP}=\mathrm{CP}(\mathrm{By} \mathrm{CPCT}) \ldots$
(iii) From equation (1),
$\therefore \mathrm{BAP}=\therefore \mathrm{CAP}$
Hence, AP bisects $\therefore \mathrm{A}$.
In $\triangle B D P$ and $\triangle C D P$,

```
BD = CD (Given)
DP = DP (Common)
BP = CP [From equation (2)]
\therefore \triangleBDP ACDP (By S.S.S. Congruence rule)
\thereforeB'DP = CD'P (By CPCT) ... (3) Hence,
AP bisects 产. iv) }\triangle\mathrm{ BDP :
\triangleCDP (
\therefore BPD = CPD (By CPCT) .... (4)
\therefore \therefore O
\thereforeBPD + \therefore CPD = }\mp@subsup{}{}{\circ}180\mathrm{ (Linear pair angles)
    BPD + BPD = 180
\therefore
    BPD 2 - = 180 [From equation (4)]
\therefore
    BPD = 90..

From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.

\section*{Question 2:}
\(A D\) is an altitude of an isosceles triangles \(A B C\) in which \(A B=A C\). Show that i) \(A D\) bisects \(B C\) (ii) \(A D\) bisects :A. (

Answer:

(i) In \(\triangle B A D\) and \(\triangle C A D\),
\(\therefore \mathrm{ADB}=: A D C\) (Each \(90^{\circ}\) as AD is an altitude)
\(A B=A C\) (Given)
\(A D=A D\) (Common)
\(\therefore \quad \triangle B A D \therefore \triangle C A D\) (By RHS Congruence rule)
\(\therefore \quad \mathrm{BD}=\mathrm{CD}(\mathrm{By} \mathrm{CPCT})\)
Hence, AD bisects BC.
(ii) Also, by CPCT,
\(\therefore B A D=C A D\) Hence, \(A D\)
bisects A. \({ }^{\prime}\)

\section*{Question 3:}

Two sides \(A B\) and \(B C\) and median \(A M\) of one triangle \(A B C\) are respectively equal to sides \(P Q\) and \(Q R\) and median \(P N\) of \(\triangle P Q R\) (see the given figure). Show that: i) \(\triangle A B M\)

\section*{\(\triangle P Q N(i i) \triangle A B C \therefore \triangle P O R(\)}



Answer:
(i) In \(\triangle A B C, A M\) is the median to \(B C\).
\[
\begin{aligned}
& \therefore \quad \mathrm{BM}=\frac{\frac{1}{2}}{\mathrm{BC}} \\
& \therefore \mathrm{QN}=\frac{1}{2} \mathrm{QR}
\end{aligned}
\]
\[
\text { However, } B C=Q R
\]
\[
\therefore \quad \frac{\frac{1}{2}}{\mathrm{BC}} \mathrm{~F}^{\frac{1}{2}} \mathrm{QR}
\]
\[
\therefore \quad \mathrm{BM}=\mathrm{QN} \ldots \text { (1) }
\]

In \(\triangle A B M\) and \(\triangle P Q N\), In \(\triangle P Q R, P N\) is the median to \(Q R\).
```

AB = PQ (Given)
BM = QN [From equation (1)]
AM = PN (Given)
\therefore\quad\therefore\quad\triangleABM \trianglePQN (SSS congruence rule)
\therefore }\quad\therefore\textrm{ABM}=\textrm{PQN}(\textrm{By CPCT}
\therefore\quad }\quad\therefore\quadABC=PQR .
(ii) In $\triangle A B C$ and $\triangle P Q R$,
$A B=P Q$ (Given)
$\therefore \mathrm{ABC}=\therefore \mathrm{PQR}$ [From equation (2)]
$B C=Q R$ (Given)
$\therefore \triangle \mathrm{ABC} \therefore \triangle \mathrm{PQR}$ (By SAS congruence rule)
$B E$ and CF are two equal altitudes of a triangle $A B C$. Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.

Answer:


```
\thereforeBEC = \thereforeCFB (Each 90*)
BC = CB (Common)
BE = CF (Given)
\therefore \triangleBEC \triangleCFB (By RHS congruency)
\therefore B'CE = CB'F (By CPCT)
\thereforeAB = AC (Sides opposite to equal angles of a triangle are equal)
Hence, }\triangleABC\mathrm{ is isosceles.
```

Question 5:

Answer:
$A B C$ is an isosceles triangle with $A B=A C$. Drawn $A P \therefore B C$ to show that $B=C$.

In $\triangle A P B$ and $\triangle A P C$,
$\therefore \mathrm{APB}=\therefore \mathrm{APC}\left(\right.$ Each $\left.90^{\circ}\right)$
$A B=A C$ (Given)
$A P=A P$ (Common)
$\therefore \triangle A P B \quad \triangle A P C$ (Using RHS congruence rule)
$\therefore B^{\prime}=C$ (By using CPCT)
Exercise 7.4 Question 1:
Show that in a right angled triangle, the hypotenuse is the longest side.

Answer:

Let us consider a right-angled triangle $A B C$, right-angled at B.

In $\triangle A B C$,
$\therefore A+B+C=180^{\circ}$ (Angle sum property of a triangle)
$\therefore A+90^{\circ}+C=180^{\circ}$
$\therefore \mathrm{A}+\dot{\mathrm{C}}=90^{\circ}$

Hence, the other two angles have to be acute (i.e., less than 90°).
$\therefore \therefore \quad B$ is the largest angle in $\triangle A B C$.
$\therefore \quad \therefore \mathrm{B}>\mathrm{A}^{-}$and $\mathrm{B}>\mathrm{C} \quad \therefore$
$\therefore A C>B C$ and $A C>A B$
[In any triangle, the side opposite to the larger (greater) angle is longer.] Therefore, $A C$ is the largest side in $\triangle A B C$.

However, $A C$ is the hypotenuse of $\triangle A B C$. Therefore, hypotenuse is the longest side in a right-angled triangle.

Question 2:

In the given figure sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also, $\therefore \mathrm{PBC}<\therefore \mathrm{OCB}$. Show that $\mathrm{AC}>\mathrm{AB}$.

Answer:
In the given figure,
$\therefore \mathrm{ABC}+\mathrm{PBC}=180^{\circ}$ (Linear pair)
$\therefore A B C=180^{\circ}-\therefore P B C \ldots$
Also,
$\therefore \mathrm{ACB}+\therefore \mathrm{QCB}=180^{\circ}$
\therefore

$$
\begin{equation*}
A C B=180^{\circ}-\text { QCB ... } \tag{2}
\end{equation*}
$$

As PBC < QCB,
$\therefore \quad 180^{\circ}-\mathrm{PBC}>180^{\circ}-\therefore \mathrm{QCB}$
$\therefore \therefore \mathrm{ABC}>\mathrm{ACB}[$ From equations (1) and (2)] $\therefore \mathrm{AC}>$
$A B$ (Side opposite to the larger angle is larger.) Question 3:

In the given figure, $\therefore \mathrm{B}<\therefore \mathrm{A}$ and $\stackrel{\therefore}{ } \mathrm{C}<\mathrm{D}$. Show that $\mathrm{AD}<\mathrm{BC}$.

Answer:
In $\triangle A O B$,
$\therefore B<A \quad A O<B O$ (Side opposite to smaller angle is smaller) ... (1)
In $\triangle C O D$,
$\therefore \quad \mathrm{C} \quad \therefore \mathrm{D}$
\therefore OD $<$ OC (Side opposite to smaller angle is smaller) ... (2)
On adding equations (1) and (2), we obtain
$A O+O D<B O+O C$
$A D<B C$
Question 4:
$A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$ see the given figure). Show that $A>C$ and $\therefore B>(\therefore D$.

Answer:

Let us join AC.
In $\triangle A B C$,
$A B<B C$ (AB is the smallest side of quadrilateral $A B C D)$
$\therefore \quad 2 \quad 2<1$ (Angle opposite to the smaller side is smaller) ...
In $\triangle A D C$,
$A D<C D$ (CD is the largest side of quadrilateral ABCD)
$\therefore \quad \therefore \quad 4<3$ (Angle opposite to the smaller side is smaller) ..

On adding equations (1) and (2), we obtain
$\therefore 2+\therefore 4<\therefore 1+\therefore 3 \therefore$
$\therefore \mathrm{C}<\quad \mathrm{A}$
$\therefore \therefore A>8$
Let us join BD.

In $\triangle A B D$,
$A B<A D$ (AB is the smallest side of quadrilateral $A B C D$)
$\therefore 8<5$ (Angle opposite to the smaller side is smaller) ... (3)
In $\triangle B D C$,
$B C<C D(C D$ is the largest side of quadrilateral $A B C D)$
$\therefore 7:<6$ (Angle opposite to the smaller side is smaller) ... (4)
On adding equations (3) and (4), we obtain
$\therefore 8 \quad+7 \ll 5+6$
$\therefore \quad \mathrm{D}<\mathrm{B}$
$\therefore B^{\prime \prime}>D^{*}$ Question
5:
In the given figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\therefore \mathrm{QPR}$. Prove that $\therefore \mathrm{PSR}>\therefore \mathrm{PSQ}$.

Answer:
As PR > PQ,
$\therefore \quad \therefore \mathrm{PQR}>$ 'PRQ (Angle opposite to larger side is larger) ... (1) PS is the bisector of QP'R.
$\therefore \therefore$ QPS $=\therefore$ RPS \ldots
$\therefore \quad$ PSR is the exterior angle of $\triangle \mathrm{PQS}$.
$\therefore \quad \therefore \quad \mathrm{PSR}=\therefore \mathrm{PQR}+\therefore \mathrm{QPS} .$.
\therefore
$\therefore \quad \therefore \mathrm{PSQ}$ is the exterior angle of $\triangle \mathrm{PRS}$.

$$
\begin{equation*}
\mathrm{PSQ}=\therefore \mathrm{PRQ}+\therefore \mathrm{RPS} \tag{4}
\end{equation*}
$$

Adding equations (1) and (2), we obtain
$\therefore P Q R+Q P S>P R Q+\therefore R P S$
\therefore PSR > PSQ [Using the values of equations (3) and (4)]

Question 6:

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer:

Let us take a line I and from point P (i.e., not on line I), draw two line segments PN and PM. Let PN be perpendicular to line I and PM is drawn at some other angle.

In $\triangle P N M$,
$\therefore \mathrm{N}=90^{\circ}$
$\therefore \mathrm{P}+N+\mathrm{N}+\mathrm{M}=180^{\circ}$ (Angle sum property of a triangle)
$\therefore P+\dot{M}=90^{\circ}$
Clearly, M is an acute angle.
$\therefore \dot{\mathrm{M}}<\mathrm{N}$ "
\therefore
$\mathrm{PN}<\mathrm{PM}$ (Side opposite to the smaller angle is smaller)
Similarly, by drawing different line segments from P to I, it can be proved that $P N$ is smaller in comparison to them.

Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Exercise 7.5 Question

1:
$A B C$ is a triangle. Locate a point in the interior of $\triangle A B C$ which is equidistant from all the vertices of $\triangle A B C$.

Answer:
Circumcentre of a triangle is always equidistant from all the vertices of that triangle.
Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.

In $\triangle A B C$, we can find the circumcentre by drawing the perpendicular bisectors of sides $A B, B C$, and $C A$ of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of $\triangle A B C$.

Question 2:

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer:
The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the interior angles of that triangle.

Here, in $\triangle A B C$, we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of $\triangle A B C$.

Question 3:

In a huge park people are concentrated at three points (see the given figure) A
B^{*}
A: where there are different slides and swings for children,
B: near which a man-made lake is situated,
C: which is near to a large parking and exit.
Where should an ice-cream parlour be set up so that maximum number of persons can approach it?
(Hint: The parlor should be equidistant from A, B and C) Answer:
Maximum number of persons can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of $\triangle A B C$.

In this situation, maximum number of persons can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

Question 4:

Complete the hexagonal and star shaped rangolies (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

Answer:
It can be observed that hexagonal-shaped rangoli has 6 equilateral triangles in it.

$$
=\frac{\sqrt{3}}{4}(\text { side })^{2}=\frac{\sqrt{3}}{4}(5)^{2}
$$

Area of $\triangle \mathrm{OAB}$
$=\frac{\sqrt{3}}{4}(25)=\frac{25 \sqrt{3}}{4} \mathrm{~cm}^{2}$

$$
=6 \times \frac{25 \sqrt{3}}{4}=\frac{75 \sqrt{3}}{2} \mathrm{~cm}^{2}
$$

Area of hexagonal-shaped rangoli
Area of equilateral triangle having its side as $1 \mathrm{~cm}=\frac{\sqrt{3}}{4}(1)^{2}=\frac{\sqrt{3}}{4} \mathrm{~cm}^{2}$
Number of equilateral triangles of 1 cm side that can be filled
in this hexagonal-shaped rangoli $=\frac{\frac{75 \sqrt{3}}{2}}{\frac{\sqrt{3}}{4}}=150$
Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.

Area of star-shaped rangoli $=12 \times \frac{\sqrt{3}}{4} \times(5)^{2}=75 \sqrt{3}$

Number of equilateral triangles of 1 cm side that can be filled in this star-shaped rangoli $=\frac{75 \sqrt{3}}{\frac{\sqrt{3}}{4}}=300$

Therefore, star-shaped rangoli has more equilateral triangles in it.

